The relative Deligne tensor product over pointed braided fusion categories

نویسندگان

چکیده

We give a formula for the relative Deligne tensor product of two indecomposable finite semisimple module categories over pointed braided fusion category an algebraically closed field.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Categories (after P. Deligne)

This is my talk at the MIT Lie Groups Seminar. I give an exposition of a recent paper by P. Deligne “Catégories tensorielles”.

متن کامل

Unbraiding the braided tensor product

We show that the braided tensor product algebra A1⊗A2 of two module algebras A1,A2 of a quasitriangular Hopf algebraH is equal to the ordinary tensor product algebra of A1 with a subalgebra of A1⊗A2 isomorphic to A2, provided there exists a realization of H within A1. In other words, under this assumption we construct a transformation of generators which ‘decouples’ A1,A2 (i.e. makes them commu...

متن کامل

On Braided Tensor Categories of Type Bcd

We give a full classification of all braided semisimple tensor categories whose Grothendieck semiring is the one of Rep ( O(∞) ) (formally), Rep ( O(N) ) , Rep ( Sp(N) ) , or of one of its associated fusion categories. If the braiding is not symmetric, they are completely determined by the eigenvalues of a certain braiding morphism, and we determine precisely which values can occur in the vario...

متن کامل

Hopf Galois Extension in Braided Tensor Categories

The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...

متن کامل

On Algebraic Construction in Braided Tensor Categories

Braided Hopf algebras have attracted much attention in both mathematics and mathematical physics (see e.g. [1][4][13][15][17][16][20][23]). The classification of finite dimensional Hopf algebras is interesting and important for their applications (see [2] [22]). Braided Hopf algebras play an important role in the classification of finite-dimensional pointed Hopf algebras (e.g. [2][1] [19]). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.12.029